(2)地震活動

ア. 石川県能登地方の地震活動

石川県能登地方では、2018年頃から地震回数が増加傾向にあり、2020年12月から地震活動が活発に なり、2021年7月頃からさらに活発になっていた。2023年5月5日にはM6.5の地震(最大震度6強) が発生し、以降、地震活動がさらに活発になっていたが、時間の経過とともに地震の発生数は減少し ていた。

このような中で、2024年1月1日16時10分に石川県能登地方の深さ16kmでM7.6の地震(最大震度7) が発生した。この地震は活動の全期間を通じて最大規模の地震である。発震機構(CMT解)は北西-南 東方向に圧力軸を持つ逆断層型である。この地震の震央周辺では、M7.6の地震の約4分前の同日16時 06分にM5.5の地震(最大震度5強)が発生し、また、M7.6の地震発生後には、同日16時12分にM5.7の 地震(最大震度6弱)、16時18分にM6.1の地震(最大震度5強)、6日23時20分にM4.3の地震(最大震 度6弱)、9日17時59分にM6.1の地震(最大震度5弱)が発生するなど活発な地震活動が継続しており、 地震活動域は能登半島及びその北東側の海域を中心とする北東-南西に延びる150km程度の範囲に広が っている(図2-1)。これらの地震は地殻内で発生した。

青は「日本海地震・津波調査プロジェクト」の断層モデルを示す。

気象庁作成

2024年1月1日M7.6地震後の地震活動

解析対象期間: 2024年1月1日~1月27日

東京大学

■: 震源断層モデル(日本海プロジェクト)の地表トレース位置

令和6年能登半島地震の震源断層モデル

基準期間: 2023 年 12 月 25 日 ~ 2023 年 12 月 31 日 (F5 解) JST 比較期間: 2024 年 1 月 2 日 ~ 2024 年 1 月 6 日 (F5 解) JST

・黒色の星は1月1日の Mj7.6 の震央、灰色丸は震央分布(気象庁一元化震源(気象庁)を使用)、2024年1月1日16時10分~1月3日23時59分。 ・黄緑色の矩形は震源断層モデルを地表面に投影した位置で、実線が断層上端。

【推定された震源断層パラメータ】

			· =							
	経度	緯度	上端深さ	長さ	幅	走向	傾斜	すべり角	すべり量	M_w
	o	o	km	$\rm km$	$\rm km$	0	o	o	m	
断層 1	136.682	37.245	0.1	21.7	11.9	22.6	40.2	83.6	6.69	7.08
	(0.002)	(0.002)	(0.0)	(0.3)	(0.2)	(1.0)	(0.4)	(1.4)	(0.13)	(0.01)
断層 2	136.875	37.417	0.0	16.2	20.8	79.7	54.4	140.7	2.95	6.92
	(0.003)	(0.002)	(0.0)	(0.5)	(0.5)	(0.9)	(0.7)	(0.8)	(0.07)	(0.01)
断層 3	137.037	37.446	0.0	64.6	11.9	51.9	49.7	114.1	4.57	7.28
	(0.001)	(0.002)	(0.0)	(1.4)	(0.2)	(0.5)	(0.2)	(0.2)	(0.06)	(0.00)

・マルコフ連鎖モンテカルロ(MCMC)法を用いてモデルパラメータを推定。括弧内は誤差(1σ)を示す。

・ M_w と断層面積をスケーリング則(Strasser et al., 2010)に近づくように拘束。

・ M_w の計算においては、剛性率を 30 ${
m GPa}$ と仮定。3 枚の断層の合計の M_w は 7.45 。

令和6年能登半島地震のすべり分布モデル

2024 年1月1日に発生した令和6年能登半島地震について、電子基準点 GNSS 解析および SAR 解析(ピクセルオフセット法)で得られた地殻変動をもとに、矩形断層の推定結果を参考に3枚の断層を仮定して、小断層に分割したうえで地震時すべり分布を決定した。

☆印は震央、点は震源分布(気象庁ー元化震源)、2024年1月1日 16時 10分~1月2日 23時 59分。赤線は 産業技術総合研究所による活断層トレース。

- ・ M_wの計算においては、剛性率を 30 GPa と仮定した。
- ・ 断層長は約4km、断層幅は約2kmとなるよう調整した。
- ・ 最大すべり量は約9.4mである。
- 合計の Mw は 7.45 である。

断層 1

断層2

断層3

経度	緯度	上端深さ	長さ	幅	走向	傾斜
[°]	[°]	[km]	[km]	[km]	[°]	[°]
136.642	37.041	0	35.9	22	10	40
47 क	* 本 広		E 7	+=	+ -	//프 스키
経度	稱度	上端深さ	長さ	「「「」」	定问	傾斜
[°]	[°]	[km]	[km]	[km]	[°]	[°]
136.710	37.361	0	32.2	22	68	40
経度	緯度	上端深さ	長さ	幅	走向	傾斜
[°]	[°]	[km]	[km]	[km]	[°]	[°]
137.050	38.036	0	110	22	55	40

図2 GNSS 観測データから推定した震源断層モデル。3枚の矩形断層を仮定。右側の図は左側の図の能登半島付近の拡大図。赤丸は気象庁一元化震源(2024年1月1日)。青の矩形が断層位置で実線が浅い方の辺を表す。赤実線は海底活断層の位置(井上・岡村, 2010)。

表1 GNSS データから推定した令和6年能登半島地震の震源断層モデルのパラメータ。位置は矩形 断層の西上端を示す。

領	緯度	経度	上端深さ	長さ	幅	走向	傾斜	滑り角	滑り量	$\mathbf{M}_{\mathbf{w}}$
堿	Lat.(°)	Long.(°)	Depth(km)	Length(km)	Width(km)	Strike(°)	Dip(°)	Rake(°)	Slip(m)	
#1	37.285	136.656	0.1	15.0	10.0	44	45	95	8.74	7.02*
#2	37.364	136.759	0.1	26.2	19.6	72	49	146	2.40	6.98*
#3	37.439	137.034	0.1	86.8	14.9	57	41	109	3.68	7.37*

*剛性率は 30GPa。合計した Mwは 7.51。

ウ.遠地実体波を用いた震源過程解析

2024 年1月1日16時10分(日本時間)に石川県能登地方で発生した地震(Mj7.6)について、米 国大学間地震学研究連合(IRIS)のデータ管理センター(DMC)より広帯域地震波形記録を取得し、 遠地実体波を用いた震源過程解析^(注1)を行った。

破壊開始点は、気象庁による震源の位置(37°29.8′N、137°16.2′W、深さ16km)とした。断層 面は、気象庁 CMT 解の2枚の節面のうち、北東-南西走向の南東傾斜の節面(走向47°、傾斜37°、 すべり角100°)を仮定して解析した。最大破壊伝播速度は2.4km/sとした。理論波形の計算には CRUST2.0 (Bassin et al., 2000)および IASP91 (Kennett and Engdahl, 1991)の地下構造モデル を用いた。

主な結果は以下のとおり(この結果は暫定であり、今後更新することがある)。

- ・主な破壊領域は走向方向に約120km、傾斜方向に約30kmであった。
- ・主なすべりは、破壊開始点から北東方向へ約45kmの範囲、及び破壊開始点から南西方向へ約45kmの範囲に広がり、最大すべり量は1.7mであった(周辺の構造から剛性率を30GPaとして計算)。
 ・主な破壊継続時間は約40秒であった。
- ・モーメントマグニチュード (Mw) は7.4 であった。

結果の見方は、https://www.data.jma.go.jp/eqev/data/world/about_srcproc.html を参照。

(注1)解析に使用したプログラム

M. Kikuchi and H. Kanamori, Note on Teleseismic Body-Wave Inversion Program, http://www.eri.u-tokyo.ac.jp/ETAL/KIKUCHI/

令和6年能登半島地震の震源過程(暫定)

- 令和6年能登半島地震(Mj 7.6; 気象庁)について、強震波形記録を用いた震源インバージョン解析を行った。
- 記録: K-NET・KiK-net・F-netの30観測点における速度波形三成分のS波部分(0.025-0.25 Hz)
 - * 気象庁ー元化震源記載の発震時刻より約13秒前の地震を含めて一連のイベントとして解析を実施
- 解析手法:マルチタイムウィンドウ線形波形インバージョン
 - (小断層6 km×6 km、2.8秒幅のタイムウィンドウを1.4秒ずらして20個並べる)
- 断層面設定:余震の空間分布やメカニズム解、地殻変動記録を参考に、三つの矩形断層面で構成 断層面①:走向55°、傾斜50°、大きさ54 km × 24 km、Vftw 2.4 km/s 断層面②:走向60°、傾斜50°、大きさ42 km × 24 km、Vftw 2.8 km/s、破壊開始点(Hi-net震源位置、深さ12.09 km)を含む 断層面③:走向30°、傾斜50°、大きさ30 km × 24 km、Vftw 2.8 km/s
- 推定結果: M₀=3.6×10²⁰ Nm(M_w 7.6)、最大すべり量5.3 m

震源域の強震加速度記録に基線補正を施し、地動上下動変位を並べた.地動変位であることに注意する必要があるが、破壊開始点に近いISKH01(KiK-net珠洲)の大きい上昇は16:10:25くらいからはじまっていて、これはSegments3+4(青い枠の断層面. Segments1+2の下にある)の破壊の影響が大きい.また、ISK001には、2段階の上昇が見られ、それぞれSegment1+2、Segment3+4の破壊に関係しているとみることができる。一方、輪島は16:10:32くらいから上昇がはじまるが、この時刻はすべりモデル・スナップショットの20-25秒に対応し、破壊が輪島の下を進んでいくことと対応している. ISKH02をのぞけば、上昇には10秒もかかっていない、なお、ISK001(珠洲市大谷)と輪島のISK003とJMAE10は、波形インバージョンには使っていない.

0

-56 -48 -40 -32 -24 -16 -8 0

Along Strike (km)

- 3

 $45 \sim 50$

16 24 32 40 48 56

Along Strike (km)